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Dynamical reduction of discrete systems based on the renormalization-group method
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The renormalization-group~RG! method is extended for a global asymptotic analysis of discrete systems.
We show that the RG equation in discretized form leads to difference equations corresponding to the Stuart-
Landau or Ginzburg-Landau equations. We propose a discretization scheme which leads to a faithful discreti-
zation of the reduced dynamics of the original differential equations.@S1063-651X~98!01504-9#

PACS number~s!: 64.60.Ak, 11.10.Hi, 03.20.1i, 47.20.Ky
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It is a fundamental problem in physics, especially in s
tistical physics, since Boltzmann, to reduce many degree
freedom of a dynamical system to fewer degrees of freed
preserving the essential nature of the system@1#. The reduced
dynamics is often described by a few collective variab
which represent slow and long-wavelength motions of
system. There are several methods for the dynamical re
tion such as the multiple-scale methods~including the reduc-
tive perturbation method@2,3#!, the average methods~includ-
ing Whitham method@4#!, the method of normal forms@5#,
and so on. We are usually interested in the asymptotic
havior of the system after a long time. Thus the problem is
obtain a dynamical reduction in asymptotic and global d
mains.

Recently it was recognized and emphasized by Ch
Goldenfeld, and Oono@7# that the renormalization-grou
~RG! equation first developed in quantum field theory@6# is
a powerful tool for global and asymptotic analysis: Th
applied the perturbative RG equation to ordinary and par
differential equations and showed that the RG equa
nicely gives a reduction of the dynamics describing slow a
long-wavelength motions of the system; the reduced dyn
ics is described by the so-called amplitude equations. Af
wards the reason for the powerfulness of the RG equat
was accounted for in the context of the classical theory
envelopes@8#. More recently, it was shown that the R
method can also naturally lead to phase equations@9#.

The purpose of this paper is twofold: One is to show t
the RG method can be extended todiscretesystems, and
leads to dynamical reduction ofdiscretedynamical systems
~maps!. A discrete system is described by adifferenceequa-
tion. We notice that the extension is highly nontrivial b
cause the applicability of the RG method for different
equations essentially relies on the local nature of differen
tion @8#. Another purpose is to propose a discretizati
scheme for differential equations: Needless to say, differ
discretization schemes of nonlinear differential equatio
lead to different dynamical systems. We shall show that s
a discretization-scheme dependence also exists for the re
ibility of the dynamics, and gives a good discretizati
scheme based on the notion of the reducibility of the dyna
ics.

Now let us take the following discrete system as a typi
example of nonlinear discrete systems,

xn1222 cosuxn111xn5e f ~xn ,xn11!, ~1!
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whereu is a constant and the functionf (xn ,xn11) contains
nonlinear terms. We remark that the equation can be c
verted to a vector equation, Xn5F(Xn), with
Xn5 t(xn ,yn[xn11) and F(Xn)5 t

„yn ,2 cosuyn2xn
1ef(xn ,yn)…. We have taken an example of a second-or
equation here, but the following discussion is applicable
higher-order equations. We notice that the unperturbed eq
tion (e50) has a neutrally stable solution exp(6 iu) @10#.
Assuming thate is small, we shall apply perturbation theor
To make the discussion definite, let us take a concrete f
for f (xn ,xn11) as f (xn ,xn11)5a1xn1a2xn

21a3xn
3 . If we

set a250, the resultant equation may be considered a
discrete version of the damped Duffin equation.

Expandingxn asxn5xn
(0)1exn

(1)1e2xn
(2)1•••, let us try

to find a solution which is valid aroundn5n0 wheren0 is
arbitrary:xn

( i ) ( i 50,1,. . . ) satisfiesL̂xn
(0)50, L̂xn

(1)5a1xn
(0)

1a2xn
(0)21a3xn

(0)3, and so on. HereL̂5E222(cosu)E11,
with E is the forwarding operator, i.e.,Exn5xn11. The low-
est order solution may be written as

xn
~0!5A~n0!einu1c.c. ~2!

Here we have made it explicit thatA may be a function of
n0; its functional dependence is as yet unknown, and will
determined by the RG equation, the determination of wh
constitutes the central part of the RG method. The first or
correctionxn

(1) is given by

xn
~1!52

i

2 sin u
~n2n0!~a1A13a3uAu2A!ei ~n21!u1c.c.,

~3!

where we have omitted nonsingular terms which are prop
tional to exp(iknu) only with k50, 2, and 3. Notice that
there appears a secular term proportional ton2n0. We re-
mark that the solution of the first-order equation is n
unique; one could add any term proportional toxn

(0) . We
have chosen the above form so that only new independ
terms appear, and the secular term vanishes atn5n0, which
assures the lowest order approximation is as good as
sible. Up to O(e2), we have an approximate solutio
xn5xn

(0)1exn
(1)[xn„(A(n0);n0…, which is only locally valid

aroundn5;n0; the validity as an approximate solution
4817 © 1998 The American Physical Society
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lost due to the secular term, asun2n0u becomes large. This
means that the naive perturbation expansion breaks do
which is a well known fact.

One may say, however, that we have a family of discr
curvesxn„A(n0),n0… with n0 being a parameter characteri
ing the curves@8#. Each curve will become a good approx
mation for the exact solution aroundn5n0 if A(n0) is suit-
ably chosen. Therefore the ‘‘envelope’’ of the family of th
curves may give a good approximation of the exact solut
in a global domain@12#. The ‘‘envelope’’ ofxn„(A(n0);n0…

is constructed as follows: We first impose that

Dn0
xn„A~n0!;n0…50, ~4!

whereDn0
denotes the difference with respect ton0. This is

the basic equation of our method and we call it the RG
equation. This is an equation to given0 andA(n0) as func-
tions ofn0(n). The ‘‘envelope’’xn

E is given by inserting this
solution intoxn„A(n0);n0…; xn

E5xn@A„n0(n)…;n0(n)#. How-
ever, since we are constructing the ‘‘envelope’’ which co
tacts with the local solutions atn5n0, so that the ‘‘enve-
lope’’ give a good approximation,n0 should ben, i.e.,
n05n: Notice that this choice nicely eliminates the secu
term fromxn

E . Conversely speaking,A(n) can be determined
so that Eq.~4! givesn05n; this possibility is related with the
‘‘renormalizability’’ of the equation@7#. Thus we have

DA~n!5e
exp~2 iu!

2i sin u
„a1A~n!13a3uA~n!u2A~n!…, ~5!

whereD denotes the difference operator with respect ton
@13#. This is the amplitude equation in a discrete form c
responding to Stuart-Landau equation@14# for continuum
systems.xn

E is thus given by

xn
E5„A~n!einu1c.c.…12a2euA~n!u21~higher harmonics!.

~6!

A significant point is that this function gives an approxima
but uniformly valid solution in a global domain. Let us sho
this in a general setting. LetXn5 t(X1n ,X2n ,...,Xdn) and
F(Xn ,n)5 t

„F1(Xn ,n), F2(Xn ,n),...,Fd(Xn ,n)…; we as-
sume thatF(Xn ,n) is analytic with respect toXn . We con-
sider the difference equation

DXn5F~Xn ,n!. ~7!

We suppose thatX̃n„W(n0),n0… is an approximate solution
to the equation up toO(ep), where thed-dimensional vector
W(n0) denotes the initial values assigned at the initial tim
n5n0. Here notice thatn0 is arbitrary. The envelope func
tion is given byXn

E[X̃n„W(n),n…, whereW(n) is the solu-

tion to the RG/E equation,Dn0
X̃n„W(n0),n0…5O(ep).

Then one can show thatXn
E satisfies the origina

equation uniformly up to O(ep) as follows:
DXn

E 5 DX̃n„W(n0),n0… un05n11 1 Dn0
X̃n„W(n0), n0… un05n

5 F(X̃n„W(n0 ,n0),n… un05n11 1 O(ep)5F„X̃n(W(n),n),n…

2 ]F/]X̃n•Dn0
X̃n„W(n0), n0… un05n 1 O(em>p) 5 F(Xn

E ,n)

1O(ep). Here we have utilized the RG/E equation in t
n,

e

n

-

r

-

second and last equality, and the analyticity ofF in the third
equality. This concludes the proof.

We notice that the amplitude equation~5! is a first-order
equation and a dynamical reduction is achieved in comp
son with the original equation. In fact, in the polar represe
tation A(n)5Rnexp(iwn), Rn andwn satisfy the equations

Rn115Rn2~e/2!~a1Rn13a3Rn
3! ~8!

and wn115wn2(e/2)cotu(a113a3Rn
2), respectively. Notice

that Rn is determined by the first order equation indepe
dently of wn , which in turn is given in terms ofRn . Thus
one may say that the second order dynamical system Eq~1!
is reduced to a first order one. As seen from the derivat
this reduced equation has a universal nature, as has
Stuart-Landau equation.

The first order equation forRn has simple qualitative
properties depending on the signs and values ofa1 and a3.
For example, whena1,0 but a3.0, the equation is con-
verted tof n115 f n1a fn(12 f n

2) with f n5A3a3 /ua1uRn and
a[eua1u/2. For 0,a,1, the equation has a fixed poin
f * 51, while, for 1,a;1.246, the map shows a two-perio
behavior, and after that the map rapidly shows that multip
period behavior then eventually becomes chaotic.

As another example of ordinary difference equation, let
take the one which is derived as a discretization of the R
leigh equation:ẍ1x5e ẋ(121/3ẋ2). We remark that the
equation admit a limit cycle with the radius of 2@15#. We
take the following discretizations;ẍ→(xn1122xn1xn21)/
Dt2 and ẋ→(xn2xn21)/Dt. That is, the central difference
for the second derivative and the backward difference for
first derivative. Thus we have

xn1122 cosuxn1xn21

5 ē ~xn2xn21!S 12
1

3

~xn2xn21!2

Dt2 D , ~9!

where cosu512Dt2/2 andē5eDt. We remark that this dif-
ference equation has a neutrally stable solution like the
perturbed one. This is not the case for other discretiza
schemes such asẍ→(xn1222xn111xn)/Dt2 and ẋ
→(xn112xn)/Dt. We put 1/Dt5v.

In the first order approximation with respect toē , we have

xn[xn„A~n0!;n0…

5FA~n0!1 ē
exp~2 iu!

2i sin u
„12v2uB~n0!u2

…

3B~n0!~n2n0!Geinu2
ē

3
v2

3
B~n0!3exp~3inu!

„exp~3iu!2exp~ iu!…„exp~3iu!2exp~2 iu!…
1c.c.,

~10!
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whereB(n0)5„exp(iu)21…A(n0). Now the RG/E equation
Dn0

xn(A(n0);n0)un05n50 gives the amplitude equatio

DA(n)5 ē exp(2 iu)/2i sinu„12v2uB(n)u2…B(n); accord-
ingly,

A~n11!5A~n!1zA~n!„12uA~n!u2…, ~11!

with z[ē exp(2 iu)/cosu/2. If we take the polar represen
tation A(n)5Rnexp(iwn), we have Rn115Rn

1ea8Rn(12Rn
2), and wn115wn1 ē (sinu/2)(12Rn

2) with
a85Dt cosu/(2 cosu/2). We note thata8 as a function of
Dt is a parabolalike shape, and takes a maximum about
at Dt.0.9; it vanishes atDt50 andDt.1.4. Thus we see
that Rn goes up monotonically to a fixed point 1.

With this Rn andwn , the envelopexn
E is given as

xn
E[xn„A~n!;n…52Rncos~nu1wn!

1
ē

12

tan u

cos3u/2
Rn

3sin$3~nu1wn!2 3
2 u%, ~12!

which shows that the radius of the limit cycle is 2, irrespe
tive of the choice ofDt in accordance with the original Ray
leigh equation. We remark that it is not the case for ot
discretization schemes as given below Eq.~9!.

Figure 1~a! showsxn
E given by Eq.~12! and the envelope

2Rn together with the exact solution of Eq.~9! with e50.4
andDt50.25. One can see that the agreement is excellen
the global domain; notice that the result is obtained in
first order approximation. One can also see that the am
tude 2Rn successfully describes the slow motion of the s
tem. The characteristic features of the system as a dynam

FIG. 1. ~a! The dots showxn
E @Eq. ~12!# vs nDt, while the thin

line shows the envelope 2Rn for e50.4 andDt50.25. The bold
line shows the exact solution of Eq.~9!. ~b! The behaviors in
‘‘phase space.’’ The vertical axis denotes the ‘‘velocity
vn[(xn112xn)/Dt, while the horizontal axis denotesxn . The dots
show our approximate solution, and the solid line shows the e
one.
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system may be more clearly seen in Fig. 1~b!, where the
behaviors in the ‘‘phase space’’ are shown. The agreeme
again excellent@16#.

Finally, we consider partial difference equations. As
example, we take the difference equation which is given b
discretization of the one-dimensional Swift-Hohenberg eq
tion @17#: ] tf(x,t)5e@f(x,t)2f(x,t)3#2(11]x

2)2f(x,t).
With the discretization ] tf→@f(n,m11)2f(n,m)#/
Dt [ Dmf(n,m#)/Dt,]x

2f→@f(n11,m)22f(n,m)1f(n
21,m)#/Dx2[Dn

2f(n,m)/Dx2, we have the following par-
tial difference equation:

L̂f~n,m!5e@f~n,m!2f~n,m!3#, ~13!

where L̂[Dm1r (Dx21Dn
2)2, with r[Dt/Dx4. We shall

show that the difference equation admit a dynamical red
tion giving an amplitude equation which is the analogue
the time-dependent Ginzburg-Landau equation in the c
tinuum theory. The reason why the dynamical reduction
possible in the RG method is that the difference equatio
constructed so that the unperturbed equation has a neut
stable solution.

Making the Taylor expansionf5f01ef11e2f21•••,
we have equations in the successive orderL̂f050,
L̂f15f02f0

3 , and so on. We consider an asymptotic so
tion atm→` and take the following neutrally stable solutio
as the zeroth order one

f0~n,m!5A~n0 ,m0!einux1c.c., ~14!

with ux52 sin21Dx/2. Here we have made it explicit that th
amplitudeA may depend in an as yet unknown way on t
initial time m0 and pointn0. They will be determined by the
RG/E equation.

Then the first-order equation now reads

L̂f15$~A23uAu2A!einux2A3e3inux%1c.c. ~15!

A straightforward but somewhat tedious manipulation giv

f1~n,m!5H Fm1~m2m0!2
m2r 21

8 sin2 ux

3$n~2!2n0
~2!1 ie2 iux~n2n0!%G

3~A23uAu2A!einux

2
A3e3i ~n12!ux

r ~e3iux2eiux!2~e3iux2e2 iux!2J 1c.c., ~16!

wheren(2)5n(n21) andm11m251. Thus we have an ap
proximate solutionf(n,m)5f0(n,m)1ef1(n,m), which
is valid only for (n,m) aroundn;n0 andm;m0.

Now the RG/E equations Dm0
fum05m50 and

Dn0
fun05n50 give DmA(n,m)5em1(123uAu2)A, and

Dn
2A(n,m)52 em2/4r sin2ux (123uAu2)A, respectively. Here

we have utilized the factDmA5O(e) andDnA5O(e), and
neglected terms ofO(e2). Thus, noting thatm11m251, we
reach the amplitude equation for the difference equation

ct
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DmA~n,m!54r sin2uxDn
2A~n,m!

1e„123uA~n,m!u2
…A~n,m!. ~17!

This is precisely the discretized form of the time-depend
Ginzburg-Landau equation: ] tA(x,t)54]x

2f(x,t)1e„1
23uA(x,t)u2

…A(x,t).
In summary, we have shown that the renormalizat

group method can be nicely extended to discrete syste
and that the method is useful as a tool for global asympt
analysis and gives dynamical reduction of discrete syste
We have emphasized that the method is applicable for
tems which have neutrally stable solutions. It is to be
marked that this is also the case for equations which h
,
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unperturbed solutions on invariant stable and unstable m
folds. We have also given a notion of the discretizati
scheme that faithfully preserves the nature of the redu
dynamics irrespective of the magnitude ofDt. Finally, we
notice that it is not trivial which discretization scheme pr
serves the integrability of differential equations which adm
soliton solutions@18#. It will be interesting to examine if our
discretization scheme based on the RG method can ha
relevance to soliton theories.
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