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Dynamical reduction of discrete systems based on the renormalization-group method
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The renormalization-groufRG) method is extended for a global asymptotic analysis of discrete systems.
We show that the RG equation in discretized form leads to difference equations corresponding to the Stuart-
Landau or Ginzburg-Landau equations. We propose a discretization scheme which leads to a faithful discreti-
zation of the reduced dynamics of the original differential equatip®%063-651X98)01504-9

PACS numbsg(s): 64.60.Ak, 11.10.Hi, 03.26:i, 47.20.Ky

It is a fundamental problem in physics, especially in sta-where # is a constant and the functidifx,,x,+;) contains
tistical physics, since Boltzmann, to reduce many degrees afonlinear terms. We remark that the equation can be con-
freedom of a dynamical system to fewer degrees of freedomerted to a vector equation, X,=F(X,), with
preserving the essential nature of the systginThe reduced  X,="'(X,,Yn=Xn+1) and  F(X,)="(yn,2 costy,—X,
dynamics is often described by a few collective variables+ef(x,,y,)). We have taken an example of a second-order
which represent slow and long-wavelength motions of theequation here, but the following discussion is applicable for
system. There are several methods for the dynamical reduéigher-order equations. We notice that the unperturbed equa-
tion such as the multiple-scale methdd=luding the reduc- tion (e=0) has a neutrally stable solution expi(6) [10].
tive perturbation methof®,3]), the average methodmclud-  Assuming thak is small, we shall apply perturbation theory.
ing Whitham method4]), the method of normal formib],  To make the discussion definite, let us take a concrete form
and so on. We are usually interested in the asymptotic b&or f(x,,x,.1) as f(x, ,Xn+1)=alxn+azxﬁ+ a3x§. If we
havior of the system after a Iong time. Thus the problem is 1Get a,=0, the resultant equation may be considered as a
obtain a dynamical reduction in asymptotic and global doiscrete version of the damped Duffin equation.
mains. _ _ _ Expandingx, asx,=x+ex(V+ @+ - . ., let us try
Goll?diﬁgﬂiy gn‘(’j"a(s) Orﬁgg?r;';;dt r?gdre?wrgrprggl?;za?%nbérgﬂ)eqo find a solution which is valid around=n, wheren, is

’ - H (@ F iefinal v(0) (1) 0
(RG) equation first developed in quantum field thep®y is arbltraoryz. XE‘) ('0_0’1" ) sat|sf|esLfo1 )_g’ LXE‘ Lalx& :
a powerful tool for global and asymptotic analysis: They +a2Xy"?+azx{”%, and so on. Herd =E®—2(Co®)E+1,
applied the perturbative RG equation to ordinary and partiaWith E is the forwarding operator, i.eEX, =X, 1. The low-
differential equations and showed that the RG equatior@st order solution may be written as
nicely gives a reduction of the dynamics describing slow and
long-wavelength motions of the system; the reduced dynam- x9=A(ng)e"’+c.c. )
ics is described by the so-called amplitude equations. After-
wards the reason for the powerfulness of the RG equations ) . ]
was accounted for in the context of the classical theory ofiere we have made it explicit th& may be a function of
method can also natura”y lead to phase equaﬂi@ﬂ]s determ|ned by the RG equation, the determination Of which

The purpose of this paper is twofold: One is to show thatconstitutes the central part of the RG method. The first order
the RG method can be extended discrete systems, and correctionx" is given by
leads to dynamical reduction dliiscretedynamical systems
(maps. A discrete system is described byd#ferenceequa-
tion. We notice that the extension is highly nontrivial be- x("=—
cause the applicability of the RG method for differential
equations essentially relies on the local nature of differentia-
tion [8]. Another purpose is to propose a discretization
scheme for differential equations: Needless to say, differeritvhere we have omitted nonsingular terms which are propor-
discretization schemes of nonlinear differential equationgional to exp(kn#) only with k=0, 2, and 3. Notice that
lead to different dynamical systems. We shall show that suckhere appears a secular term proportionahten,. We re-

a discretization-scheme dependence also exists for the redusark that the solution of the first-order equation is not
ibility of the dynamics, and gives a good discretizationunique; one could add any term proportionaleg?). We
scheme based on the notion of the reducibility of the dynamhave chosen the above form so that only new independent

(n—ng)(a;A+3ag|A|?PA)e " Vit c.c.,
3

2siné

ics. terms appear, and the secular term vanishes=at,, which
Now let us take the following discrete system as a typicalassures the lowest order approximation is as good as pos-
example of nonlinear discrete systems, sible. Up to O(€?), we have an approximate solution
Xn= X9+ extM=x,((A(ny);ny), which is only locally valid
Xnt2—2 COSOXpy 1+ Xn=€f (Xp, Xn+1), (1) aroundn=V¥Yn,; the validity as an approximate solution is
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lost due to the secular term, f3—ny| becomes large. This
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second and last equality, and the analyticity=ah the third

means that the naive perturbation expansion breaks dowequality. This concludes the proof.

which is a well known fact.

We notice that the amplitude equati@®) is a first-order

One may say, however, that we have a family of discreteequation and a dynamical reduction is achieved in compari-

curvesx,(A(ng),ng) with ng being a parameter characteriz-
ing the curveg8]. Each curve will become a good approxi-
mation for the exact solution aroumd=ng if A(ng) is suit-

ably chosen. Therefore the “envelope” of the family of the

curves may give a good approximation of the exact solution

in a global domairf12]. The “envelope” of x,((A(ng);ng)
is constructed as follows: We first impose that

Ang¥n(A(NG):No)=0, (@)

whereA, denotes the difference with respectrtg This is
the basic equation of our method and we call it the RG/
equation. This is an equation to gimg and A(ny) as func-
tions ofng(n). The “envelope”xE is given by inserting this
solution intox,(A(Ng);Ng); X =Xa[ A(No(Nn));No(n)]. How-
ever, since we are constructing the “envelope” which con-
tacts with the local solutions at=ng, so that the “enve-
lope” give a good approximationn, should ben, i.e.,

son with the original equation. In fact, in the polar represen-
tation A(n) =R,exp( ¢,), R, and ¢, satisfy the equations

Rn+1=Rq—(€/2)(a3R,+ 3a3R3) (8)

and ¢, 1= ¢,— (€/2)cot 0(a1+3a3R,21), respectively. Notice
that R, is determined by the first order equation indepen-
dently of ¢,, which in turn is given in terms oR,. Thus
one may say that the second order dynamical systenflEq.

is reduced to a first order one. As seen from the derivation,

Ethis reduced equation has a universal nature, as has the

Stuart-Landau equation.

The first order equation foR, has simple qualitative
properties depending on the signs and valuea,ond a;.
For example, wherm;<0 but a;>0, the equation is con-
verted tof . ,=f,+af,(1—f2) with f,=3as/[a;|R, and
a=elay|/2. For 0<a<1, the equation has a fixed point

Ng=n: Notice that this choice nicely eliminates the Secu|al’f* = 1, Wh”e, for 1<a~1246, the map shows a two_period

term frome. Conversely speakingy(n) can be determined
so that Eq(4) givesny= n; this possibility is related with the
“renormalizability” of the equation7]. Thus we have

exp(—if)

AA(Nn)= Em(alA(n) +3ag|A(n)|?A(n)), (5)

where A denotes the difference operator with respecnto
[13]. This is the amplitude equation in a discrete form cor-
responding to Stuart-Landau equatift¥] for continuum
systemsxt is thus given by

Xt=(A(n)e"’+c.c)+2a,¢e|A(n)|?+ (higher harmonics

(6)

A significant point is that this function gives an approximate
but uniformly valid solution in a global domain. Let us show
this in a general setting. LeX,='(X1n,Xon,...,.Xgn) and
F(X,,n)="(F1(X,,n), Fu(X,,n),....Fq(X,,n)); we as-
sume that~=(X,,,n) is analytic with respect t&X,. We con-
sider the difference equation
AXp=F(X;,n). (7)

We suppose thaX,(W(no),ny) is an approximate solution
to the equation up t®(eP), where thed-dimensional vector

W(ng) denotes the initial values assigned at the initial time

n=ngy. Here notice thah, is arbitrary. The envelope func-
tion is given byXE=X,(W(n),n), whereW(n) is the solu-
tion to the RG/E equationA, X,(W(no),ng)=0(eP).
Then one can show thatXt satisfies the original
equation uniformly up to O(eP) as follows:
AXE = AX\(W(N0),No) [n =n+1+ A Xn(W(Ng), No) [ =n

= F(X,(W(ng,Ng),N) [n=n+1 + O(e?) =F(Xn(W(n),n),n)

— 9F19Xn- Ay Xo(W(No), No) [n,—n + O(e™P) = F(XE ,n)
+O(€P). Here we have utilized the RG/E equation in the

behavior, and after that the map rapidly shows that multiple-
period behavior then eventually becomes chaotic.

As another example of ordinary difference equation, let us
take the one which is derived as a discretization of the Ray-

leigh equation:x+x=ex(1—1/3x?). We remark that the
equation admit a limit cycle with the radius of[25]. We

take the following discretizations{— (X4 1— 2Xp+Xp—1)/

At? and x—(x,—X,_1)/At. That is, the central difference
for the second derivative and the backward difference for the
first derivative. Thus we have

Xn+1— 2 COS X+ Xpn_1

:I-(Xn_xnfl)2
! At? ) ©

3
where cosf=1—At%2 ande=eAt. We remark that this dif-
ference equation has a neutrally stable solution like the un-
perturbed one. This is not the case for other discretization

schemes such ask—(Xp:2— 2Xpse1+X,)/At2 and x
—(Xpe1— Xp)/At. We put 1At= w.

In the first order approximation with respectzowe have

:E_(Xn_xn—l)(

Xp=Xn(A(Ng);Nop)

—_exp(—if
=|A(ng) + €2ip(Tn€)(1_w2|B(n°)|2)
e
X B(Ng)(N—nNg) e'”ﬁ—ng

B(no)3exp(3in o)
X (exp(3i 6) —exp(i ) (exp(3i ) —exp(—i 6)) +c.c.,
(10
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Tan system may be more clearly seen in Figb)1 where the
behaviors in the “phase space” are shown. The agreement is
again excellenf16].

Finally, we consider partial difference equations. As an
example, we take the difference equation which is given by a
discretization of the one-dimensional Swift-Hohenberg equa-
tion [17]: 9, p(X,t) = e[ d(X,1) — d(x,1)3]— (1+ 52)2p(x,1).
With the discretization d;¢p—[ d(n,m+1)— @H(n,m)]/
At= And(n,m])/At,02¢ —[ s(n+1m)—2¢(n,m)+ ¢(n
—1,m)]/Ax?=A2¢4(n,m)/Ax?, we have the following par-
tial difference equation:

Lp(n,m)= e[ ¢(n,m)— ¢(n,m)3], (13)

where £=A,+r(Ax?+A2)2 with r=At/Ax*. We shall

show that the difference equation admit a dynamical reduc-
tion giving an amplitude equation which is the analogue of
the time-dependent Ginzburg-Landau equation in the con-
tinuum theory. The reason why the dynamical reduction is
FIG. 1. (a) The dots showt [Eq. (12)] vs nAt, while the thin ~ Possible in the RG method is that the difference equation is

line shows the envelopeR, for e=0.4 andAt=0.25. The bold constructed so that the unperturbed equation has a neutrally
line shows the exact solution of Eq9). (b) The behaviors in Stable solution.

“phase space.” The vertical axis denotes the “velocity”  Making the Taylor expansiog= o+ e+ edhp+ - - -,
vn=(Xn+1—Xn)/At, while the horizontal axis denoteg. The dots we have equations in the successive 0rd@¢0=0,

show our approximate solution, and the solid line shows the exac& _
one. $1= o

- ¢8, and so on. We consider an asymptotic solu-
tion atm— oo and take the following neutrally stable solution
as the zeroth order one

whereB(ng) = (exp( 8) — 1)A(ng). Now the RG/E equation

Anoxn(A(no);no)|n0=n=0 gives the amplitude equation $o(n,m)=A(ng,my)e"*+c.c., (14
AA(n)= € exp(—i6)/2i sin 81— w?B(n)|)B(n); accord-
ingl(yn) € exp(~10)/21 sin 61 = " |B(M)[*)B() cor with 6,=2 sin” *Ax/2. Here we have made it explicit that the

with zz?exp(—i #)/cosal2. If we take the polar represen-

amplitudeA may depend in an as yet unknown way on the
_ _ 2 initial time mg and pointng. They will be determined by the
A(n+1)=A(n)+zAn)(1—|A(n)[?), ) RG/E equation
Then the first-order equation now reads

tation  A(n)=R.exple,), we have Ry.;=R, Lp={(A—3|A]2A)e"%— A3 +cc. (15

+ea’Ry(1-R?), and ¢, 1= ¢n+ e(sind2)(1—R2) with _ . o
a’=At cosd/(2 cosd/2). We note thag’ as a function of A straightforward but somewhat tedious manipulation gives

At is a parabolalike shape, and takes a maximum about 0.6
at At=0.9; it vanishes att=0 andAt=1.4. Thus we see
thatR,, goes up monotonically to a fixed point 1.

which shows that the radius of the limit cycle is 2, irrespec-
tive of the choice ofAt in accordance with the original Ray-

leigh equation. We remark that it is not the case for other
discretization schemes as given below E. b

2R, together with the exact solution of E() with e=0.4
andAt=0.25. One can see that the agreement is excellent iﬁno

pot 1

m—mg) — ————
#al o 8 sirt 6,

¢1(n,m)= {
With this R,, and ¢,,, the envelope(ﬁ is given as

(2) _ 2 Lia=ibxn—_
XE=X,(A(n);n)=2R,cogno+ ¢,) X =g e T (n nO)}l

€

0 , X (A—3|A|?A)e"%
5 Risi{3(nd+¢n)—35 6}, (12
12 coS0/2 A3g3i(n+2)6,

} +c.c., (16

B r (€310x— @i fx)2( i fx— g ifx)2

wheren®=n(n—1) andu,+ u,=1. Thus we have an ap-
roximate solutiong(n,m)= ¢q(n,m)+ ep,(n,m), which
is valid only for (n,m) aroundn~ng and m~mq.

Now the RG/E equations Am0¢|m0=m=0 and

Pln,=n=0 give ApA(n,m)=eu,(1-3|A|%A, and

Figure 1a) showsx,'f given by Eq.(12) and the envelope

the global domain; notice that the result is obtained in thed 2A(n,m)=— eu,/4r sirfg (1—-3|A1)A, respectively. Here
first order approximation. One can also see that the ampliwe have utilized the fach ,,A=0O(e) andA,A=0(e), and
tude 2R, successfully describes the slow motion of the sys-neglected terms aD(e?). Thus, noting thaju; + u,=1, we
tem. The characteristic features of the system as a dynamicegach the amplitude equation for the difference equation
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A A(N,m)=4r sinzaxAﬁA(n,m) unperturbed solutions on invariant stable and unstable mani-
) folds. We have also given a notion of the discretization
+e(1=3|A(n,m)[)A(n,m).  (17)  scheme that faithfully preserves the nature of the reduced
This is precisely the discretized form of the time—dependenpyr!‘r’mICS |r're.spect|ve.: .Of the. magnltudg M' Finally, we
. S 5 notice that it is not trivial which discretization scheme pre-
Ginzburg-Landau equation: dA(X,t) =4, d(X,t) + €e(1 he i bilitv of diff al . hich admi
“3lAG) DAL serves the integrability of differential equations which admit
n su,mmar ,w.e have shown that the renormalizationsollton solutiong18]. It will be interesting to examine if our
Y, . . discretization scheme based on the RG method can have a
group method can be nicely extended to discrete system§ : .
: .Télevance to soliton theories.
and that the method is useful as a tool for global asymptotic
analysis and gives dynamical reduction of discrete systems. We thank Professor M. Yamaguti and Professor R. Hirota
We have emphasized that the method is applicable for syder their interest in this work. This work was supported by
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